

SSC8122GS7

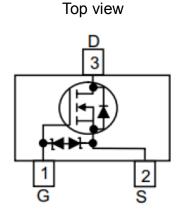
N-Channel Enhancement Mode MOSFET with ESD Protection

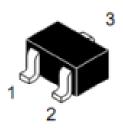
Features

VDS	VGS	RDSON Typ.	ID	ESD
		220mR@4V5		
20V	±8V	300mR@2V5	1.5A	2K
		460mR@1V8		

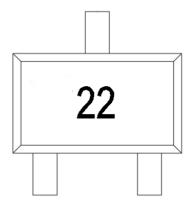
Description

This device is a N-Channel enhancement mode MOSFET which is produced with high cell density and DMOS trench technology. This device particularly suits low voltage applications, especially for battery powered circuits, the tiny and thin outline saves PCB consumption.


> Applications


- Replace Digital Transistor
- Battery Operated Systems
- Power Supply Converter Circuits
- Load/Power Switching cell
 Phones

> Ordering Information


Device	Package	Shipping
SSC8122GS7	SOT323	3000/Reel

> Pin configuration

SOT323

Marking

> Absolute Maximum Ratings(T_A=25[°]C unless otherwise noted)

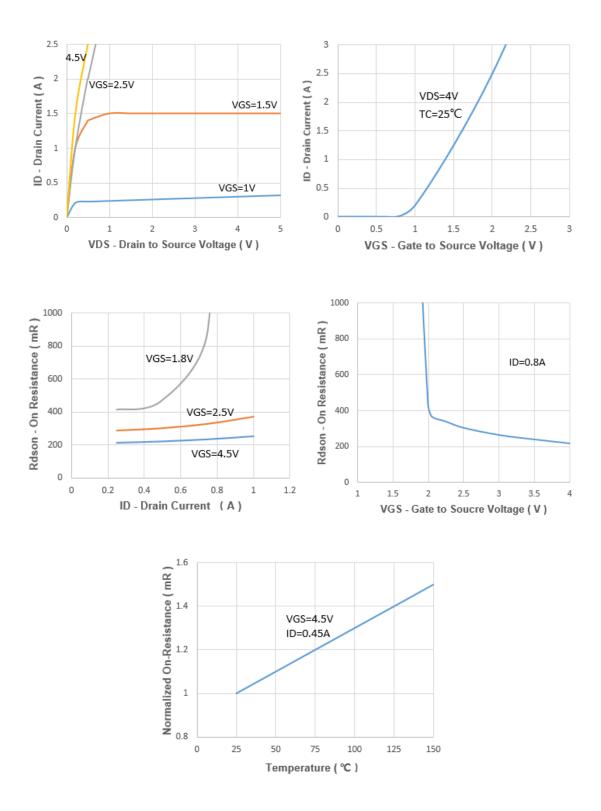
Symbol	Parameter	Ratings	Unit
VDSS	Drain-to-Source Voltage	20	V
V _{GSS}	Gate-to-Source Voltage	±8	V
lo	Continuous Drain Current ^a	1.5	А
Ідм	Pulsed Drain Current ^b	4.5	А
PD	Power Dissipation ^c	0.46	W
Розм	Power Dissipation ^a	0.25	W
TJ	Operation junction temperature	-55 to 150	°C
Тѕтс	Storage temperature range	-55 to 150	°C

➤ Thermal Resistance Ratings(T_A=25°C unless otherwise noted)

Symbol	Parameter	Typical	Maximum	Unit
Reja	Junction-to-Ambient Thermal Resistance ^a		500	°C/W
Rejc	Junction-to-Case Thermal Resistance		270	C/ VV

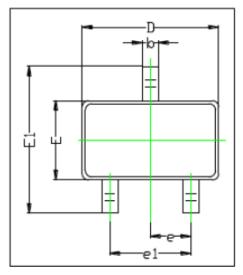
Note:

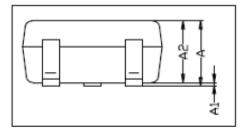
- a. The value of RθJA is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with TA=25C°. The value in any given application depends on the user is specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.



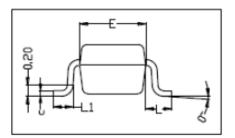
Electronics Characteristics(T_A=25°C unless otherwise noted)

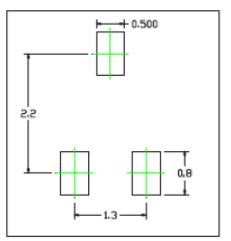
Symbol	Parameter	Test Conditions	Min	Тур.	Мах	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V,ID=250uA	20			V
$V_{GS \ (th)}$	Gate Threshold Voltage	VDS=VGS,ID=250uA	0.5	0.8	1.2	V
	Drain-Source On-	VGS=4.5V,ID=0.55A		220	400	
R _{DS(on)}	Resistance	VGS=2.5V,ID=0.45A		300	500	mR
	Resistance	VGS=1.8V,ID=0.35A		460	800	
I _{DSS}	Zero Gate Voltage Drain Current	VDS=16V,VGS=0V			1	uA
I _{GSS}	Gate-Source leak current	VGS=±8V,VDS=0V			±10	uA
G_{FS}	Forward Transconductance	VDS=5V,ID=0.45A		1.8		S
V_{SD}	Forward Voltage	VGS=0V,IS=0.5A			1.3	V
Ciss	Input Capacitance			56		
Coss	Output Capacitance	VDS=10V, VGS=0V, f=100KHZ		15		pF
Crss	Reverse Transfer Capacitance			9		
T _{D(ON)}	Turn-on delay time	VGS=4.5V,		22		20
Td(off)	Turn-off delay time	VDD=10V, RG=6R, ID=0.55A		36		ns


> **Typical Characteristics**(T_A=25°C unless otherwise noted)



> Package Information


TOP VIEW


FRONT VIEW

SIDE VIEW

SOLDERING PATTERN

SYMBOL	DIMENSIONS I	N MILLIMETER	
STMBOL	MIN	MAX	
A	0.900	1.000	
A1	0.00	0.100	
A2	0.900	1.000	
b	0.200	0.400	
С	0.080	0.150	
D	2.000	2.200	
E	1.150	1.350	
E1	2.150	2.450	
е	0.650 TYP.		
e1	1.200	1.400	
L	0.525 REF.		
L1	0.260	0.460	
θ	0°	8°	

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.